
ISRAEL JOURNAL OF MATHEMATICS,  Vol. 73, No. 3, 1991 

ON THE SINGULARITIES 
OF NILPOTENT ORBITS 

BY 

v. HINICH 
Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel 

ABSTRACT 

Let 0 be a nilpotent orbit of the adjoint action of a complex connected semi-sim- 
ple Lie group on its Lie algebra. We prove that the normalization of the closure 
of C9 is Gorenstein and has rational singularities. 

1. Introduction 

Let G be a complex connected semi-simple Lie group and g its Lie algebra. Let 

e E g be a nilpotent element. It is well known that the orbit 0 = G . e  ~ g of e un- 

der the adjoint action of  G on g is locally closed in the Zariski topology, that is, 

0 is open in its Zariski closure 0. The latter is an affine algebraic variety defined 

by the ideal of polynomials in C[g] = S(g*) vanishing on ©. 

The aim of  this paper is to prove that the normalization 0 ..... of 0 is Goren- 

stein and has rational singularities (for the definitions see (2.1)-(2.2)). We deduce 

from this that the singularity of  6 ..... in a G-orbit of  codimension two is 

smoothly equivalent to a rational double point. 

Interest in the study of singularities of nilpotent orbits comes from Brieskorn's 

work [B]. There he proves that the singularity of the nilpotent cone of a complex 

semi-simple Lie algebra in a subregular point is always smoothly equivalent to a 

rational double point; in the cases A , , D n , E 6 - E 8  this singularity is described by 

the same Dynkin diagram as the one corresponding to the Lie algebra. 

It has been proven for many special cases that the normalization of a nilpotent 

orbit has rational singularities (cf. [Hel], [KP], [K], [Kr]). However, the general 

result seemed to be difficult. 

The starting point for our considerations was W. McGovern's formula (cf. [M]) 
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expressing the G-module structure of  the ring of  global regular functions on 0 in 

terms of some induced modules. 

The proof is a direct application of  duality theory for coherent sheaves (see [H], 

Ch. VII). 

The results and constructions of [M] are crucial in our proof. Since the original 

paper contains some misprints and inaccuracies, we present in Sections 3.1-3.2 an 

outline of  the constructions we need. In this I would like to thank W. McGovern 

for making clear to me some aspects of  his proof. 

I would like to express my deep gratitude to Professor A. Joseph for valuable 

comments and suggestions, to V. Berkovich for helpful discussions. 

The paper was written in January 1990. It was available as a preprint since Feb- 

ruary 2, 1990. The main result, Theorem (3.3), was incorporated into a Ph.D. the- 

sis by A. Broer ([Bro], 3.6.19, 4.2.11) who informed us in a letter of May 25, 1990 

that he had previously known this result in a special case. On July 3, 1990 we re- 

ceived from H. Kraft a handwritten manuscript by D. Panyushev giving a rather 

similar proof  of  Theorem (3.3).-see Section 6. 

2. The key lemma 

Throughout  the paper, all schemes are assumed to be schemes of finite type 

over C. 

Let us recall a few definitions. 

(2.1) DEFINITION. (a) A commutative Noetberian ring is called Gorenstein if it 

has finite injective dimension as a module over itself (for equivalent definitions see 

[Ma], Th. 18.1). 

(b) A scheme S is Gorenstein if all the local rings OS, x, x E S, are Gorenstein. 

(2.2) DEFINITION (cf. [KKMS], pp. 50-51). A scheme S is said to have rational 

singularities if it is normal and there exists a desingularization f :  X ~ S such that  

Ri f . (Ox)  = 0 for i > 0. 

A key step in the proof  of  our main result is the following lemma. 

(2.3) LEMMA. Let 7r : X --, Y be a proper birational morphism with X smooth 

and Y normal. Let Wx be the sheaf o f  higher differentials on X. Suppose there ex- 

ists a morphism ~ : Ox ~ Wx such that ~r,4~ : 7C.Ox ~ 7C, Wx is an isomorphism. 

Then Y is Gorenstein and has rational singularities. 

The proof  of the lemma is given in Section 5. A sketch of the duality theorem 

needed is presented in Section 4. 
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3. Applications to nilpotent orbits 

In 3.1-3.2 we present an outline of  McGovern 's  results [M]. Sections 3.3-3.4 

contain the main results of  this paper. 

Let G, g, e, 0 be as in the Introduction. 

(3.1) Desingularization of ~) (cf. [KP], [M]) 
Choose an ~12-triple (e,f ,  h) in g containing the nilpotent element e E g. Set gi = 

[ x E  ~: [h,x] = ix} for i E Z. One has g = (~)i~z gi. Moreover,  p := @)i_~o ~]i is 

a parabolic subalgebra of  g having nil-radical m := @i_~1 gi and Levi subalgebra 

I := go. Denote by Vthe  subalgebra (~i___2 gi. Obviously e E g2 _c V. 

Let P be the parabolic subgroup of  G with Lie algebra ~ ~ g, and let P - L M  

be the Levi decomposition for P corresponding to ~ = l Q m. 

(3.1.1) LEMMA ([SS], III.4.16-4.19). (a) S tabc(e)  c_ p ;  

(b) V = Pe. 

From this a desingularization for 0 can be constructed as follows. Define X = 

G ×P V = (G x V) /P ,  where the right action of  P on G × Vis defined by the 

formula (g, v )p  = (gp, p-~ v). Define the map r : X ~  fl by the formula r(g, v) = 

g ( v )  E ~. Since r is a composi t ion of  the closed embedding X ~-~ G / P  × g, 

(g, v)~-, (gP, g(v)) ,  and the projection pr2:  G / P  × g ~ g, it is proper. 

(3.1.2) PROPOSITION ([KP], 7.4; [M]). The image r ( X )  is 0 c_ g and r :X-- ,  0 

is proper birational. It  is an isomorphism on r - t (O)  c_ X .  

(3.2) McGovern 's  formula  [M] 

The space X constructed above admits a natural G-action. This provides a 

natural G-action on the structure sheaf Ox and also on the sheaf COx of  higher 

differentials. 

Consider the following exact sequence of P-modules 

0"--~ V - *  m ---~ fll -- '~0 

where fll is extended to a P-module by letting M act trivially. Its dual 

0--, g~ ~ m*--, V * ~ O  

gives rise to the following Koszul-type resolution for a P - S(m*)-module S(V*)  

l 

(l) O ~  A fl~ @ S(m*) - , .  . . ~  fl~ ® S(m *) ~ S(m*) - ,  S (V*)  ~ O 

where t = dim c gl and S( ) denotes the symmetric algebra. 
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Consider the following diagram of schemes. 

X = G  x P V i ~ G × P r o = :  Y 

G / P  

The morphism q : Y ~ G / P  is affine. It defines an equivalence q. between the 

category of Or-modules and the category of q. (Oy)-modules. Moreover,  q. also 

defines an equivalence between tlhe category of G - Or-modules and the category 

of  G - q . ( O r ) - m o d u l e s .  

For any finite-dimensional P-module Wlet W denote the G-sheaf of  sections of  

the vector bundle G x P W over G/P. The correspondence W ~ W is an exact 

functor; it induces an exact functor f rom the category of P - S(m*)-modules of  

finite type to the category of  G - S(~*)-modules .  

Note that q. (0v) = S(~*) ,  so, composing the functors above, we obtain an ex- 

act functor f rom the category of finitely generated P - S(m*)-modules into the 

category of G - Or-modules. Applying this functor to (1) one obtains the follow- 

ing G-equivariant resolution for the Oy-module i .Ox: 

(2) • . .  q ( g l ) - - ~ O r - ~ i . O x ~ O .  

In a similar way one obtains the following G-equivariant resolution for the 

Or-module  i.o~x: 

(3) 

The resolution (3) leads easily to the following formula for the Euler character- 

istic of  O~x as an element of  the representation ring of G: 

(4) 
( J) 

~_~ ( -1)~H~(X,o~x)  - ~]  (-I)~+-/H i G / P , q ,  Oy (~ A ~ • 
i i , j  

According to the Grauert-Riemenschneider theorem (cf. [GR], Satz 2.4 or [K], 

Theorem 4), H i ( X ,  cox)= 0 for i > 0. 

On the other hand, a nice lemma ([M], Lemma 2.1) expressing induction func- 

tors i n d f  in terms of cohomolcgy of  G/P,  makes it possible to rewrite the right- 

hand side of  (4) and to obtain *;he following 
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(3.2.1) PROPOSITION. One has 

H°(X,  cox) = ~] ( - l y  lnd~( A gl) 
J 

in the representation ring of  G. 

The following result is of  great importance for us. 

(3.2.2) PROPOSiTiON. There exists a G-invariant section in H°(X,  cox). Let 
0 : Ox --, COx be the corresponding sheaf morphism. Then 

H°(X,  ch) : H°( X,©x) ~ H°( X, COx) 

is bijective. 

PROOF. The existence of  a G-invariant  section follows f rom the formula  

(3.2.1). Indeed, by Frobenius reciprocity the trivial representation of G appears 

only once in the right-hand side, namely, in the summand I n d ~ ( A  ° g~). Denote 

by 0 : 0x  ~ COx the corresponding G-equivariant morphism of sheaves. We wish to 

prove that H°(X,O) :H°(X,©x) ~ H°(X,  wx) is bijective. 

Injectivity of  H°(X,O) is standard. To prove surjectivity, note that any 

homomorphism ff : Ox --. cox can be represented as ff = 0"x  where x is a rational 

function on X. Consider x as a rational function on Y = 0 . . . .  . The set ~2 of poles 

of  x is a subset of  the set ~2' of  zeroes of  0. But f~' is a G-invariant proper subset 

of  Y. Hence codim ft _> codim fi' _> 2. Thus x is regular on O,orm. This means that 

the map H°(Y,  Or) --. H°(X,  wx), defined by the G-invariant section of cox, is 

onto. Since the morphism X ~ Y is birational and proper,  and Y is normal,  

H°(X,  Ox) = H°(Y,©y), and this finishes the proof.  

(3.2.3) COROLLARY ([M], Theorem 3.1). Let R(©) be the ring of  regular func- 
tions on © considered as a G-module. 

One has 

R(O) = ~ (--1) j Ind g~ 
J 

in the representation ring of  G. 

(3.3) Singularities of 0.orm 
Set Y = ~.orm. The morphism T : X ~  0 described in (3.1.2) can be factored 

through normalization Y-~ tg. Denote by 7r the morphism from X to Y so ob- 
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tained. Since Y is affine and H ° ( X ,  4~) is an isomorphism by (3.2.2), it follows 

that 7r.~ : 7r.0x ~ r.O~x is also an isomorphism. Since ~3 is finitely generated over 

C so is Y. Applying Lemma (2.3) to 7r:X--,  Y we obtain immediately the result 

announced: 

THEOREM. Let G be a complex connected semi-simple Lie group with the Lie 

algebra g. Let 0 be a nilpotent orbit o f  the adjoint action o f  G on g. Then the nor- 

malization ~norm o f  the closure 0 is Gorenstein and has rational singularities. 

(3.4) Singularities in eodimension two 
Theorem (3.3) gives particularly nice information about the singularities o f  

t9 n°rm in codimension two. 

Recall the following definitions. 

(3.4.1) DEHNmON (cf. [He2]l, 1.7 or [KP], 12.1). Algebraic varieties X and 

Y are said to be smoothly equivalent in x E X and y E Y if there exist a variety 

Z, a point z E Z and smooth morphisms f :  Z --, X, g : Z --* Y, such that f ( z )  = x, 

g ( z )  = y. 

(3.4.2) DEFINITION (cf. [S], III.5.1). Let X be a variety with an action of an al- 

gebraic group G. Take x E X. A locally closed subvariety S ~ x is called a trans- 

verse slice in X to the G-orbit of  x if 

(i) the morphism # : (g,s)  ~ gs of  G × S into X is smooth,  

(ii) the dimension of S is minimal with respect to (i). 

(3.4.3) COROLLARY (to (3.3)). Let 0norm be as in (3.3) and choose x ~ t9 n°rm so 

that Gx has codimension two. Then the singularity o f  0 . . . .  in x is smoothly  

equivalent to a rational double' point. 

PROOF. The result follows f rom the assertions (a)-(c) below. 

(a) There exists a transverse slice S in ~orm for x; the dimension of S is two 

and S has an isolated singularity at x. 

(b) Both the property to have a rational singularity at x and the Gorenstein 

property carry over from (~norm tO S. 

(c) Rational two-dimensional singularities which are Gorenstein are rational 

double points. 

Let us check the assertions. To obtain (a) we follow a standard procedure of  con- 

structing transverse slices (see IS], 5.1, Lemmas 1, 2). 

Let v : (~norm ~ g be the composition of the normalization map (~norm ~ (~ with 

the closed embedding 0 ~-* g. :get y = v(x) .  Let T b e  a transverse slice for g in y. 

By [S], 5.1, Remark 2, dim T =  dimg - d i m @ ,  so d im(T f') Gy) = O. 
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Now, a transverse slice S for (~norm in x can be obtained f rom the cartesian 

diagram 

S ) ~norm 

T , g  

(cf. [S], 5.1, Lemma 2). One has obviously S n Gx = ~,-1(TO Gy).  Since u is fi- 

nite, d im(S N Gx) = 0 and so dim S = dim 0 n°rm - dim Gx + dim(S n Gx) = 2. 

To check that S is Gorenstein it suffices to note that (S ,x )  and (~)n°rm,x) are 

smoothly equivalent and to use the standard theorem on the behaviour of  the 

Gorenstein property under flat morphisms (cf. [Ma], 23.4). 

Let us show S has rational singularities. In fact, by th6or6me 5 of  [E] applied 

to the morphism/~ : G × S ~ (~no~m, G × S has rational singularities. Note that the 

map pr~ : G × S ~ G has an obvious simultaneous resolution 

G × S  , G × S  

I prl 1 prl 
G - - G  

where S ~ S is a desingularization for S. Then th6or6me 3 of  [E] applied to prL 

gives that S has rational singularities. Finally, for the assertion (c) see [W], 2.5-2.6. 

The corollary is proven. 

4. Dual i ty  theorem: a sketch 

We formulate here a part of  the duality theorem for coherent sheaves. For more 

details see [H], VII.3.4. 

(4.1) Derived category 

Here we fix some notations and recall some standard facts about the derived cat- 

egory of ©x-modules for a scheme X. 

Let ff be an abelian category. 

Denote by K((_t) the category whose objects are complexes over 0~ and whose 

morphisms are homotopy classes of  morphisms of complexes of  degree zero. De- 

note by K+(t2) (resp. K-((~))  the full subcategory of  K((~) consisting of com- 

plexes bounded below (resp. above). Set K~((~) = K * ( ~ )  N K-( (~) .  

Let Ois denote the set of  morphisms of K((~) which induce an isomorphism in 

cohomology. The derived category of (~, D((~), is defined as the localization of  
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K(~2) with respect to Qis. So, D(6~) has the same objects as K((~). A morphism 

f :X - - ,  Yin D((~) is represented by a diagram X ~  X' ~ Yin K((~) with sE Qis. 

Let D+((~), D-((~), Db(6~) be the full subcategories of D((~) consisting of 

complexes with (appropriately) bounded cohomology. 

Now let X be a prescheme and let mod(0x) denote the category of 0x-mod- 

ules. We write D(X)  instead of D(mod(Ox)) and use Dqc(X ) (resp. De(X)) to 

denote the full subcategory of D ( X )  consisting of complexes with quasi-coherent 

(resp. coherent) cohomology. 

(4.1.1) LEMMA ([H], II.7). Suppose X is a locally Noetherian prescheme. Then 

there is a natural equivalence of categories 

D+(Qco(X)) ~ + Dqc(X)  ' 

where Qco ( x )  is the category of quasi-coherent sheaves on X. 

(4.2) Dualizing complex 
The functor 3Comx : mod(O~:) °p x mod(0x) --, mod(0x) defines the right de- 

rived functor 

R3Comx :D(X)  °p x D+(X) ~ D(X)  

which can be calculated, for instance, using injective resolutions on the second 

argument. 
Analogously, the functor @ : mod(Ox) × mod(0x) ~ mod(Ox) defines the left 

derived functor @L: D - ( X )  x D - ( X )  -~ D - ( X )  which can be calculated using 

fiat resolutions. 

For a morphism of schemes f :  X-~ Y the right derived functor Rf.  : D+(X) 

D+(Y) of the direct image fu:nctor, and the left derived functor _L f*  : D - ( Y )  

D - ( X )  of the inverse image functor, are defined. They can be calculated using in- 

jective (resp. flat) resolutions. 

We shall denote by Rif, (M), M ~ D+(X), the i-th cohomology of the complex 

R f ,  (M). This corresponds to the usual notation when M is represented by a sin- 

gle sheaf. 

(4.2.1) LEMMA ([HI, V. 1.2). For any ~ E D+(X) there is a natural functorial 

homomorphism 

F - ,  R_3eom(R_3Com(F,o~),~o) 

on D(X) .  
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(4.2.2) DEFINITION. Let X be a locally Noetherian prescheme. A complex co E 

D~c(X) is said to have finite injective dimension if there exists an integer n such 

that for any Ox-module M one has Hi(R3Comx(M, co)) = 0 for all i > n. 

(4.2.3) DEFINITION. Let X be a locally Noetherian prescheme. A complex co E 

D+(X) is said to be dualizing if  

(i) co has finite injective dimension, 

(ii) the homomorphism of (4.2.1) is an isomorphism for any F E Dc(X). 
A dualizing complex, if it exists, is unique up to tensoring by an invertible sheaf 

and shifting (cf. [H], V.3.1). 

EXAMPLE. A Noetherian scheme S of  finite Krull dimension is Gorenstein if 

and only if Ox represents a dualizing complex on S (cf. [H], V.9.1). 

(4.3) Duality theorem (cf. [H], VII.3.4). 

Recall that we are working in the category of  schemes of finite type over C. 

For any morphism f :  X ---, Y a functor 

f !  :D+(Y)  ~Dc+(X) 

is defined, such that 

(i) for any pair of  morphisms f : X ~  Y, g:  Y--, Z one h a s f ! g  ! -~ (g f )! ,  
(ii) i f f : X ~  Yis smooth of  relative dimension n then for any F E  D~(Y) 

f ! (F)  ~ L_f*(F) ®L cox/v[n] 

where ¢Ox/r is the sheaf of  higher relative differentials and [n] means a shift of  

"n steps left", 

(iii) if f :  X ~ Y is proper, there is a natural "duality isomorphism" 

R_f, (R3Comx(F,f: G)) -~ R_3Comy(R_f,F, G) 

for all F E D~(X),  G E D+(Y), 
(iv) the functor f~ takes dualizing complexes over Y to dualizing complexes 

over X. 

5. The proof of the key lemma 

Let 7r : X ~ Y be a proper birational morphism. Suppose that X is smooth and 

Y is normal. Let 4~ : Ox -~ cox be a morphism inducing an isomorphism ~r. ~. We 

shall prove this implies that Y is Gorenstein and has rational singularities. 
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Consider the diagram 

X ~ ) Y 

Spec(C) 

According to (4.3.(i)) p ' (C) = 7r ~ q ~ (C). Applying (4.3.(ii)) to p : X - 4  Spec(C) 

one obtains p~ (C) ~ _Lp*(C) Q L  cox[n] = cox[n] where n = d i m X =  dim Y. So, 

denoting by cot the complex q ! ( C ) [ - n ]  E D~+(Y), we have ~r!(cor) = cox. By 

(4.3.(iv)) cot is dualizing over Y. 

Apply the duality isomorphism (4.3.(iii)) to the morphism 7r and complexes 

COx, cot. We obtain 

(5) R_~r. ( R_3Comx (cox, cox)) -- R_3Comr( R_7r. (COx), cot). 

Since Hi(R_3Comx(cox,cox)) = COx for i = 0 and 0 for i > 0, the left-hand side 

of  (5) can be identified with _RTr. (COx). 

By the Grauert-Riemenschneider theorem (cf. [K], Th. 4) Riz:. (cox) = 0 for i > 

0. Since 7r is proper birational, X is smooth and Y is normal,  one has 7r.(COx) ~- 

COy. So by the assumption of  the lemma 

(6) R_Tr.(cox) ~- Or  

and (5) can be rewritten as 

(7) Rzc . (Ox)  -~ COy. 

Recall we have the morphism ~b : Ox -~ cox. This induces the morphism 

cot RTr . (Ox)  m~.(,) --- _ , R_Tr.(cox) = Or 

in D ( Y ) ,  the isomorphisms being taken f rom (6), (7). Let us denote it by ~b. 

Again by the hypothesis of  the lemma, ~b : cot - Or induces an isomorphism 

H°(~b) in zero cohomology since R%r. (4~) = r .  (40 is an isomorphism. 

Now we shall prove all this implies that Y is Gorenstein. I f  i: U -  Y is an open 

immersion, i*(cor) is dualizing over U (one can apply, for instance, (4.3.(ii)) to 

make sure that i ~ = L_i* = i*) and i*(~b) induces an isomorphism in zero cohomol- 

ogy. By definition Y being Gorenstein is a local property. Therefore, it suffices to 

prove the assertion in the case Y = Spec(A) where A is a commutative Noetherian 

ring. 

According to (4.1.1) we can work in the category of  A-modules instead of the 

category of 0r -modules .  
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So we are given a morphism ~b : ~oA ~ A in D ( A )  which induces an isomorphism 

H°(~b) :H°(o0A) --% A.  By defini t ion ~b:coA --, A is represented by a d iagram 

~oA Z- f2 ~ A with s E Qis. The morphism 'tl : fl ~ A of  complexes o f  A-modules  

is given by the following diagram 

. . .  :, ~ 1 d - I )  ~ 0  dO ) ~1 :, . . .  

1 1 J 
• "" ) 0 , A  ~ 0  ) " "  

with R ° d - 1  = 0. 

Since H°(xI ,)  : H°(~2) ~ A is an isomorphism,  there exists a cycle z E flo such 

that '~'°(z) = 1. Therefore  the A-module  map a ~, az of  A ~ flo extends to a mor-  

phism o : A  ~ ~ of  complexes.  One has obviously 9 0  = idA. Thus,  fl -~ A O 

Ker 9 .  

Now, f~ has finite injective dimension (it is isomorphic to ~0A in D ( A ) ) ,  so A has 

also finite injective dimension.  Therefore  A is Gorenstein.  

Now, since Y is Gorenstein,  ~or has an only non-zero cohomology ,  so ~b : O~y --, 

Or  is an isomorphism.  

Then RiTr.(Ox) -~ H i ( w y )  = 0 for i :g 0. 

The lemma is proven.  

6. Remarks 

The remarks below are derived f rom a private communica t ion  o f  H. Kraft.  

(6.1) There is the following direct construct ion o f  a G-invariant  section o f  the 

dualizing sheaf ~0x on X (see (3.2.2)). 

Let c~ : V - ,  ^2g*_ l = A2gi be defined by the formula  

c~(v ) (x , y )  = ( [ x , y ] , v ) ,  x, y E g _ l .  

The alternating fo rm on g_l given by ~ ( e )  is non-degenerate ,  so dimg~ = 2m is 

even and c~ induces a non-zero P-equivar iant  map a m : S m V--, A2m~l. Then com- 

posing c~m with diagonal  6 and multiplication/~ one obtains 

~ : S V *  J®~, S V * ® S m V * ® S m V  ~®~) S V * ® S " V  ~®~", S V * ® A 2 m g l .  

The category o f  G - @x-modules is equivalent to the category o f  P - SV*-mod-  

ules (compare with (3.2)). In this the G - ©x-module  ©x corresponds to the P - 

S V * - m o d u l e  SV*  and ~0x corresponds to SV*  ® A 2m gi. Therefore ,  0 : SV*  

SV*  ® A 2m g~ defines a G-invariant  section o f  Wx as required. 
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(6.2) The key lemma (2.3) is a strengthened version of  Satz (1.3) in H. Flenner, 
Archiv der Math. 36 (1981), 35-44. Also Theorem (3.3) can be deduced by prov- 
ing that all the hypotheses of Flenner's Satz (1.3) are satisfied. This was essentially 

the route suggested by Panyushev. 
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